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As a second-order phase transition is traversed critical scattering appears; these fluctuations serve no-
tice of the impending loss of stability of the equilibrium phase. For a model first-order phase transition
we rigorously prove, using exact thermodynamic quantities obtained from strip-transfer-matrix calcula-
tions, as well as finite-size-scaling analysis, that as a temperature-driven, symmetry-breaking, first-order
phase transition is approached, no enhancement of fluctuations into the future product phase occurs. To
be specific, we study the probability of occupation of the product phase (stable below the transition tem-
perature), and demonstrate that this is a monotonically decreasing function as the transition temperature
is approached from above. The relation of this pedagogical result to x-ray scattering experiments is dis-

cussed.
PACS number(s): 64.60.—1i, 64.70.Kb, 81.30.Kf

I. INTRODUCTION

The exact analytical solution to the two-dimensional
(2D) Ising model [1] has provided a valuable guide to the
properties of second-order phase transitions. In particu-
lar, it is known that the magnetic susceptibility diverges
to infinity at the critical temperature [2], and via the
fluctuation-dissipation theorem we thus know that criti-
cal scattering will also occur as the transition is ap-
proached. There are many experimental verifications of
this behavior in magnetic systems as well as in structural
phase transitions [3] (apart from the central-peak
phenomenon [4], which may be explained via defects [5]).

In first-order phase transitions the situation is different.
To be specific, the natural question concerning the analog
of critical fluctuations is as follows: As a first-order
phase transition is approached, does the impending loss
of thermodynamic stability of a given phase manifest it-
self in the form of enhanced fluctuations into the product
phase? In this Brief Report we shall use exact thermo-
dynamics to rigorously prove that for our model system
the correct answer is no, in agreement with a very old
conjecture made by Fisher [6]. While this result cannot
be considered to be new, our pedagogical analysis of the
probability of the ensuing product phase is instructive,
and we show how our work allows for direct comparison
with some experimentally observed quantities.

Many experiments studying this question have concen-
trated on displacive structural phase transitions, includ-
ing so-called martensitic phase transitions. For pure sys-
tems, such as the alkali metals [7] and the group-Illa and
-IVa metals [8], it is clear that no indications of such
heterophase fluctuations into the product phase are found
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in inelastic-neutron-scattering studies. Alternatively, in
impure systems [9], it is clear that such fluctuations do
occur, and even static domains of the product phase are
seen coexisting with the host matrix. Experiments on
other types of systems have been extensively reviewed by
Yukalov [10].

We shall focus on a simple model that can be interpret-
ed to represent a structural phase transition, although its
application is much more general. We consider a 2D
square lattice, where at each lattice site a single scalar de-
gree of freedom is present. Denoting the scalar at a
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FIG. 1. The on-site potential Vg given in Eq. (1) that acts
upon the single component scalar degree of freedom present at
each site. One may scale the potential such that u, takes on any
value (here it is chosen to be 1), and then only the energy barrier
E and the ratio of the barrier to the energy well depth E3 /Ey,
need to be specified.
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chosen site by u, we specify that the local potential be
given by
Vos(u)=1au?—L1bu*+Leu® . (D

This so-called ¢° potential, for appropriately chosen a, b,
and ¢ (which we stress are temperature independent), is
shown in Fig. 1. This potential corresponds to two stable
states of u ==xu,, as well as one metastable state at u =0;
note that Vg(u)=Vos(—u). Then, every site is coupled
to its near neighbors by an interaction (which we specify
below) such that the ground state corresponds to a
symmetry-broken state with the same value of u =u, or
u = —u, being assumed on every site. At very high tem-
peratures it is clear that the “particles” will not be local-
ized in any of the wells of Vg, but rather the thermal ex-
pectation value of u, denoted by (u ), will be zero. Due
to the energy barriers Ez shown in Fig. 1, it is clear that
a first-order phase transition will occur at some inter-
mediate temperature T, where {u ) jumps from zero to a
value close to Tuy.

We now specify the interparticle interaction potential.
In analogy with ¢* classical field theory, it is clear that
the simplest model of a temperature-driven, symmetry-
breaking, first-order phase transition may be constructed
using Vg and an intersite coupling potential which is
simply harmonic, viz.,

VIS({u,-}):g(Z)(ui—uj)z, @
ij

where the lattice sites of our 2D net are denoted by i, and
near neighbors are specified by (i,j). However, as has
been discussed elsewhere [11], the driving force for this
model is a configurational entropy of In(2) per site, and
thus leads to a very weak transition. By taking note of a
continuum field theory of this system that involves
higher-order couplings, viz.,

Hg=[d Vos<u>+12‘—(vm2+%u2<vm2+-~ )

it was recognized [12] that the driving force of this sys-
tem can be changed to an arbitrarily large amount of vi-
brational entropy if the following (again, temperature-
independent) Hamiltonian is considered:

H= Vos(u)+Vis+ (2) %(u,.2+uj?)(ui—uj)2 . @

i L

We have previously demonstrated that this latter term al-
lows this system to approach its bulk limit very rapidly
[11,13], and this is explained below.

II. FINITE-SIZE-SCALING FORMALISM

Our work shall employ the transfer-matrix technique;
this allows for the exact determination of the equilibrium
thermodynamics of a system. This is to be contrasted
with the Monte Carlo technique, which when applied to
first-order phase transitions must overcome the large en-
ergy barriers at strongly first-order phase transitions by
approximating ergodic trajectories with very long simula-
tions.

We shall consider a 2D lattice that is infinite in extent
in one dimension only, and of breadth L in the other.
This will allow strip-transfer-matrix calculations to be
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done [14]; bulk thermodynamic quantities are then found
by implementing finite-size scaling appropriate to this
geometry. Previously, we have presented an exhaustive
study of our finite-size-scaling ansatz for temperature-
driven, symmetry-breaking, first-order phase transitions
[13] for systems of this geometry. Here we simply note
that the scaling form for the singular part of the reduced
Gibb’s free energy is

A
gS=L—§WT(tASL§) »

T(L) ~’

where W is a universal function. In Eq. (5), T, (L) is the
analog of the transition temperature for a finite L (which
may conveniently be defined as the temperature at which
the specific heat peaks), § corresponds to the domain-wall
separation of the low-temperature variants (technically,
this is the most slowly diverging transfer-matrix correla-
tion length), and AS is the change of entropy occurring at
the transition [13]. The physics behind Eq. (5) is clear—
the driving force for a temperature-driven transition is
the entropy, and thus the argument of the universal func-
tion W is simply the reduced latent heat ¢ AS multiplied
by the average area of a domain of the low-temperature
product phase. In the bulk limit, since the free energy
per particle is intensive, Wr(y) < |y|. Then, from Eq. (5)
it follows that for a finite value of L the transition region
will not contain a cusp in the Gibb’s free energy, but in-
stead will be rounded over a temperature interval (that is,
of course, dependent upon L) defined by

ASLE
The transfer-matrix correlation length & diverges like
exp(L), and one then finds [11,13] the very desirable re-
sult (for practical numerical studies) that the finite-size-
affected regime defined by Eq. (6) vanishes very rapidly
with L.

With the scaling form of the free energy given in Eq.
(5) combined with the above definition of the finite-size-
affected regime, one may scale the argument of a given
thermodynamic function such that it is independent of L
(providing the system is large enough) by replacing the
argument by

T—T,(L)

YTTAT@) @

A verification of this scaling form is provided in Ref. [13]
(in particular, see Fig. 7). Finally, the relevance of the
nonlinear, intersite coupling term (a) in Eq. (4) may be
shown to be the amazing reduction of AT (L) by many
orders of magnitude, even for a 1D system [11,13].
Recently, another finite-size-scaling study of
temperature-driven, symmetry-breaking, first-order phase
transitions has been given by Lee and Kosterlitz [15].
The aim of their work was similar to that of our Ref.
[13], viz., the prediction of bulk equilibrium thermo-
dynamic quantities. In particular, their theory has been
developed to account for finite-size effects in d-
dimensional hypercubic systems. Thus, similar to work
on the first-order field-driven transition in the d =2 Ising

(5)
t

AT(L) (6)
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model for T <T, [16], these two finite-size-scaling
theories may be implemented depending on which
geometry is being used. However, it should be stressed
that the approach to the thermodynamic limit goes as an
inverse power law for hypercubic systems, whereas from
Ref. [13] it follows that the approach is exponentially
fast, and as mentioned above, this allows for a more prac-
tical numerical search of the region close to the thermo-
dynamic limit.

II1. STUDY OF PRODUCT PHASE
OCCUPATION ABOVE T,

For convenience only, we discretize the scalar u at
each site such that it only takes on the five values
u =0,%uy/2, *u,. Then in Fig. 2 we show the entropy
of this system as a function of the scaled parameter y for
L=1,2,3,4,5,6. Note that AT(L=1)=483, and
AT (L =6)=0.38; clearly, as L increases these systems
are rapidly approaching the bulk limit. The importance
of Fig. 2 is in the verification that our system is indeed
undergoing a first-order transition, as the developing
discontinuity in the entropy is associated with the latent
heat. Further, it demonstrates that except for the tem-
perature range T, —AT(L)—T,+AT(L), which is very
small for L =6, this system is behaving as would its bulk
limit counterpart.

We now specify our view of enhanced fluctuations at a
temperature-driven, symmetry-breaking, first-order phase
transition, using the above Hamiltonian as a simple ex-
ample system. We wish to stress that the entire point of
this exercise is to make and demonstrate our precise
definition of enhanced fluctuations utilizing exact ther-
modynamics; no conclusions concerning the dynamics are
possible via equilibrium statistical mechanics—thus we
must be content with making statements on static equilib-
rium quantities. Here, we focus on the probability distri-
bution function, P(u). Let T, be approached from
above. Quantify the portion of time the system spends in
either of the side wells by P(u ==%u,)=P,., and then
examine how this quantity varies with temperature. We

Entropy
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FIG. 2. The entropy vs the scaled temperature variable y for
L =1,2,3,4,5,6. We have specified the Hamiltonian’s parame-
ters using the following values: Ez=300, Ez/E, =1, and
k =a=40000 (see Ref. [13] for more thermodynamic data for
this system).
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define enhanced fluctuations (inappropriately named
heterophase fluctuations for systems in true equilibrium
[10])) as a temperature range just above 7, where
0P 4. /0T <0. To be specific, if this inequality is
satisfied, then as the transition is approached from above,
the system will tend to start to display its later tendency
(viz., at lower temperatures) to transform into a side well
state. If this does not occur until the temperature is pre-
cisely equal to T, then one may say that the system
behaved as if it was completely unaffected by the impend-
ing transition; instead, the side wells may be viewed as ex-
cited states of the {u ) =0 phase, and as the temperature
is lowered the occupation of these excited states simply
decreases. Clearly, the latter behavior is in sharp con-
trast to the presence of critical fluctuations found at
second-order phase transitions.

For the above model it is clear that if we wish to apply
this definition we require knowledge of P(%u,), the equi-
librium probability distribution function for u at any one
site, evaluated for one of the side well states; this is an
easy quantity to calculate within transfer matrix calcula-
tions [13], being a function of ¢, the transfer matrix
eigenvector of the largest eigenvalue. In Fig. 3 we plot
this quantity for temperatures above T';. We focus on the
temperature at which the minimum occurs for each L,
denoted by T,.;,(L). In this figure the position of the
minima clearly decreases linearly with L for L > 1. As
demonstrated above and elsewhere [13], for this model we
are in the scaling regime for L >2, and thus we are
guaranteed that this behavior will continue in the limit
L— .

If we denote the position of the minima by T,;,(L),
then this linear behavior implies that
Tmin(L)_‘Tl(L)O( exp[_CL] ’ (8)

suggesting that the positions of the minima vanish ex-
ponentially fast as the bulk limit is approached. We have

fit the positions of the minima for L = 3 to the form
T in(L)—T((L)Y=Ty+ A exp[ —CL] . 9)

The best fit corresponds to a T, that is slightly negative,
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FIG. 3. The probability distribution function P(zu,) vs

T —T,(L). The quantity T,;,(L) is defined to be the minimum
value of P(*u,) for T> T,(L).
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which is clearly unphysical—thus the only physically
reasonable fit is with T;=0. Also, assuming that 7, =0,
the fit is excellent. Clearly, our exact thermodynamics
shows that T, has as its asymptotic value T, in the 2D
limit. Thus according to our above definition we see that
there are no enhanced fluctuations into the ensuing prod-
uct state as the temperature is lowered towards T'; for the
bulk system.

1V. DISCUSSION

In this paper we have used exact thermodynamic quan-
tities extracted from transfer-matrix calculations, and our
finite-size-scaling theory, to analyze the probability distri-
bution function of the product phase (stable below T';) as
T, is approached from above. Consequently, we were
able to invent a definition of “enhanced fluctuations as
the  phase  transition is  approached,” viz.,
0P oquct /0T <0, which we showed did not occur in our
model system in the bulk limit as 7', was approached
from above. Here we briefly comment on the relevance
of this result to experimentally accessible quantities.

It seems that local probes, similar to the EPR [17]
studies of second-order transitions, may be best suited to
study this issue when applied to structural phase transi-
tions; quite simply, the consequences of the relation ex-
pressed in Eq. (8) refer to the probability distribution
function for a single site. In contrast to this, it is very
difficult to relate our work to the standard experimental
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probe of reciprocal space, viz., neutron scattering, that
has been used in characterizing the martensitic phase
transitions that motivated our work. Unfortunately,
equilibrium statistical mechanics does not allow for state-
ments concerning the dynamics structure factor, viz.,
S(q,w), to be made, and thus for both of these experi-
ments we cannot directly relate our result to observables.

The structure factor probed in x-ray work, S(q), can
be accessed through transfer-matrix calculations; howev-
er, the knowledge of all eigenvalues of the transfer matrix
is required [11]. Further, the model discussed here in-
volves a transition between two q=0 states. It is possible
to produce a model, similar to that given in Eq. (4), where
the transition is to a q= (=, =7) state, and then the in-
stantaneous correlations provided by this measurement
may be understood in terms of exact thermodynamic
quantities; this work will be reported elsewhere [18].
Given that S(q) measures instantaneous correlations in a
system, our result will arise as the lack of enhancement of
S(qq) as T is approached from above, where q, is the
wave vector of the low-temperature product phase.
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